I851 – Foundations in Data Science and Engineering

Modul
Foundations in Data Science and Engineering
Foundations in Data Science and Engineering

Hinweis: Das Modul wird erstmals im Sommersemester 2025 angeboten.
Modulnummer
I851
Version: 1
Fakultät
Informatik/Mathematik
Niveau
Master
Dauer
1 Semester
Turnus
Sommersemester
Modulverantwortliche/-r

Prof. Dr.-Ing. Maik Thiele
maik.thiele(at)htw-dresden.de

Dozent/-in(nen)

Prof. Dr.-Ing. Maik Thiele
maik.thiele(at)htw-dresden.de

Lehrsprache(n)

Englisch
in "Foundations in Data Science and Engineering"

ECTS-Credits

3.00 Credits

Workload

90 Stunden

Lehrveranstaltungen

2.00 SWS (1.00 SWS Vorlesung | 1.00 SWS Praktikum)

Selbststudienzeit

60.00 Stunden

Prüfungsvorleistung(en)
Keine
Prüfungsleistung(en)

Schriftliche Prüfungsleistung
Modulprüfung | Prüfungsdauer: 90 min | Wichtung: 100% | wird in englischer Sprache abgenommen
in "Foundations in Data Science and Engineering"

Lehrform

keine Angabe

Medienform

Präsenzveranstaltung

Lehrinhalte/Gliederung

The term "Data Science" has become an important buzzword in dealing with big data. Data scientists handle and analyze large amounts of data to generate information and derive recommendations for action that enable organizations to work more efficiently. To achieve this, various analytical tools and methods are used to extract valuable information from confusing data sets, from which hypotheses are subsequently derived.

This lecture provides an end-to-end look at the data science process. In the first part of the lecture, the fundamentals of data management are taught. It will be shown how large dynamic data sets can be integrated, consolidated and finally used for complex analysis tasks. In particular, the topics of data warehousing, multidimensional modeling and relational mapping are covered. Building on this, complex data models, e.g. graphs and visual analysis as a means of data interpretation are discussed. The second part of the lecture covers methods of data analysis. This includes classical statistical methods like classification, clustering and forecasting as well as machine learning methods like neural networks. Besides the methods themselves, modern analysis tools for their application are also presented. The theoretical content of the lectures is complemented by practical exercises.

Qualifikationsziele
  • Learning data management system foundations
  • Learning practical skills for dealing with error-prone data and its integration
  • Enablement to choose the correct data analysis methods given concrete usage scenarios
  • Building own end-to-end scenarios in Python for analyzing data
Sozial- und Selbstkompetenzen
Keine Angabe
Besondere Zulassungsvoraussetzung
Empfohlene Voraussetzungen

Grundlagenkenntnisse in Python

Fortsetzungsmöglichkeiten
Literatur
  • Andreas C. Muller, Sarah Guido: Introduction to Machine Learning with Python. 2017, O'Reilly.
  • Wes McKinney: Python for Data Analysis - Data Wrangling with Pandas, NumPy, and Jupyter. 2022, O'Reilly.
  • Charles Wheelan: Naked Statistics.
Aktuelle Lehrressourcen
Keine
Hinweise
Keine Angabe