I030 – Applied Artificial Intelligence

Modul
Applied Artificial Intelligence
Applied artificial intelligence
Modulnummer
I030
Version: 1
Fakultät
Informatik/Mathematik
Niveau
Master
Dauer
1 Semester
Turnus
Sommer- und Wintersemester
Modulverantwortliche/-r

Prof. Dr. rer. pol. Dirk Reichelt
dirk.reichelt(at)htw-dresden.de

Dozent/-in(nen)
Lehrsprache(n)

Englisch
in "Applied Artificial Intelligence"

ECTS-Credits

5.00 Credits

Workload

150 Stunden

Lehrveranstaltungen

4.00 SWS (2.00 SWS Vorlesung | 2.00 SWS Praktikum)

Selbststudienzeit

90.00 Stunden

Prüfungsvorleistung(en)
Keine
Prüfungsleistung(en)

Alternative Prüfungsleistung - Portfolio
Modulprüfung | Wichtung: 100% | wird in englischer Sprache abgenommen
in "Applied Artificial Intelligence"

Lehrform
  • lecture
  • exercise
  • practical course
Medienform
Keine Angabe
Lehrinhalte/Gliederung
  • Chapter 1 – A review of Python and data analysis 
  • Chapter 2 – Machine learning techniques and applications 
  • Chapter 3 – Regression and classification 
  • Chapter 4 – Metaheuristics and optimization 
  • Chapter 5 – Time series analysis and prediction 
  • Chapter 6 – Computer vision 
  • Chapter 7 – Control theory 
  • Chapter 8 – Reinforcement learning 
  • Chapter 9 – Predictive quality and maintenance 
  • Chapter 10 – Robotics
  • Chapter 11 – Planning and scheduling 
  • Chapter 12 – Advanced AI applications 
Qualifikationsziele
  • Students know basic concepts of artificial intelligence theory.
  • Students know how to use artificial intelligence to accomplish tasks in a variety of fields.
  • Students will be able to use artificial intelligence methods to solve selected practical problems.
  • Students know concepts and methods for data preprocessing for machine learning. They can apply these practically.
  • Students will be able to analyze real world problems and select appropriate artificial intelligence methods to address them.
Sozial- und Selbstkompetenzen
  • Working in teams
  • Self-awareness and evaluation of group processes
  • Problem solving across disciplines
  • Oral and written communication
Besondere Zulassungsvoraussetzung
Empfohlene Voraussetzungen

Prior knowledge of programming, preferrably in Python.

Fortsetzungsmöglichkeiten
Literatur
  • Cranganu, Constantin, Henri Luchian, and Mihaela Elena Breaban, eds. Artificial intelligent approaches in petroleum geosciences. Switzerland: Springer International Publishing, 2015. 
  • Bahrpeyma, Fouad, Hassan Haghighi, and Ali Zakerolhosseini. "An adaptive RL based approach for dynamic resource provisioning in Cloud virtualized data centers." Computing 97.12 (2015): 1209-1234.  
  • Bahrpeyma, Fouad, Hassan Haghighi, and Ali Zakerolhosseini. "An adaptive RL based approach for dynamic resource provisioning in Cloud virtualized data centers." Computing 97.12 (2015): 1209-1234. 
  • Bahrpeyma, Fouad, et al. "A methodology for validating diversity in synthetic time series generation." MethodsX 8 (2021): 101459. 
  • Naylor, Thomas H., Terry G. Seaks, and Dean W. Wichern. "Box-Jenkins methods: An alternative to econometric models." International Statistical Review/Revue Internationale de Statistique (1972): 123-137. 
  • Szeliski, Richard. Computer vision: algorithms and applications. Springer Nature, 2022. 
  • Hamilton, James Douglas. Time series analysis. Princeton university press, 2020. 
  • Allgöwer, Frank, and Alex Zheng, eds. Nonlinear model predictive control. Vol. 26. Birkhäuser, 2012. 
  • Dong, Hao, et al. Deep Reinforcement Learning. Springer Singapore, 2020. 
  • Halgamuge, Saman K., and Lipo Wang, eds. Classification and clustering for knowledge discovery. Vol. 4. Springer Science & Business Media, 2005. 
  • Harrington, Peter. Machine learning in action. Simon and Schuster, 2012. 
Aktuelle Lehrressourcen

recent learning resources will be announced in the course and linked in the OPAL course

Hinweise
Keine Angabe