I857 – Computational Archaeology

Modul
Computational Archaeology
Computational Archaeology
Modulnummer
I857
Version: 1
Fakultät
Informatik/Mathematik
Niveau
Master
Dauer
1 Semester
Turnus
Sommersemester
Modul­verantwortliche/-r

PD Prof. Dr. rer. nat. Marco Block-Berlitz
marco.block-berlitz(at)htw-dresden.de

Dozierende

PD Prof. Dr. rer. nat. Marco Block-Berlitz
marco.block-berlitz(at)htw-dresden.de

Lehrsprache(n)

Englisch

ECTS-Credits

5.00 Credits

Workload

150 Stunden

Lehrveranstaltungen

4.00 SWS (2.00 SWS Vorlesung | 2.00 SWS Praktikum)

Selbststudienzeit

90.00 Stunden

Prüfungs­vorleistung(en)
Keine Angabe
Prüfungsleistung(en)

Schriftliche Prüfungsleistung
Prüfungsdauer: 90 min | Wichtung: 100 % | Wird in englischer Sprache abgenommen

Lehrform
Keine Angabe
Medienform
  • Lecture materials are available as videos and the slides as PDFs
  • In addition to the lecture questionnaire, which is available at the end of each lecture, voluntary practical and theoretical exercises are offered
Lehrinhalte / Gliederung
  • Image processing
  • Pattern recognition
  • Agent-based modelling
  • Procedural generation
Qualifikationsziele

"They" will be used to shorten students in the remainder of this document to keep the objectives more compact.

  • They are able to master the necessary mathematical basics
  • They will be able to decide in a goal-oriented manner which methods of image processing will improve or prepare the data for a given problem.
  • They are able to apply simple methods of image processing.
  • They are able to apply simple pattern recognition methods to a given database.
  • They are qualified to understand agent-based models and are able to design simple simulations on their own
  • They are familiar with simple concepts of procedural generation of data
Besondere Zulassungs­voraussetzung(en)
Keine Angabe
Empfohlene Voraussetzungen

It is recomended to complete modul I860 Applied Mathematics and Computer Science before taking this modul.

Fortsetzungs­möglichkeiten
Keine Angabe
Literatur
  • Lambert: A Student's Guide to Bayesian Statistics, Sage Publishing, 2018
  • Zaki, Meira: Data Mining and Machine Learning: Fundamental Concepts and Algorithms, Cambridge University Press, sec. ed., 2020
  • Romanowska, Wren, Crabtree: Agent-Based Modeling for Archaeology: Simulating the Complexity of Societies, ‎ Santa Fe Institute Press, 2021
  • Shiffman: The Nature of Code: Simulating Natural Systems with Processing, The Nature of Code, 2012
Aktuelle Lehrressourcen

Script to the course und lectures notes (videos und slides as PDF)

Hinweise
Keine Angabe